If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150x-3x^2+600=0
a = -3; b = 150; c = +600;
Δ = b2-4ac
Δ = 1502-4·(-3)·600
Δ = 29700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29700}=\sqrt{900*33}=\sqrt{900}*\sqrt{33}=30\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-30\sqrt{33}}{2*-3}=\frac{-150-30\sqrt{33}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+30\sqrt{33}}{2*-3}=\frac{-150+30\sqrt{33}}{-6} $
| 3x(x+1)=(x+1)•(x+1)+x+1 | | 3^x=3888 | | 3(y-5)=41-4y | | 9x+3=5x+33 | | 0.25x+12=0.4x | | 5x+x3=5x+5 | | 2×22/7×x=176 | | 3p^+7p+4=0 | | 2n^2+2n+12=0 | | (195.55-x)/x=0.09 | | 20-(2r-5)=25 | | 2x+5x=-17-9x | | 195.55-x=0.09x | | 2/2x=10/2 | | 11x-11=5x+12 | | 4+4x=4x+x | | F(x)=7.50+5x | | F(x)=7.50 | | 2x/2x^2+1=3 | | 2(3n-3)+2=4(n+1)-2 | | x-0.1x=1925000 | | 0.8x=337522000 | | 2x^2+45x+100=1000 | | 2(2-y)+7=3 | | F(x)=x4/7 | | 10-6k=70 | | 2x^2+45x=900 | | 4t^2-2t-2=0 | | 4×^-16×+9y^+18y+30=0 | | Y=5x³-2x+1 | | 2x-18=3x+15 | | Y=15x+750 |